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Internal Geometry of Hadron Resonances 
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Motivated by previous work on high-energy quantum mechanics, a simple model 
is devised to study the internal geometry of hadron resonances. In this model we 
assume new basic canonical commutation relations between the (internal) 
coordinate and momentum operators of the hadronic quantum system. By 
systematically imposing Lie algebra commutation relations between these and 
other observables, we discuss the free and bound particle problems, identifying 
in each case the corresponding internal symmetries. For the bound particle 
problem, which models quark confinement, this symmetry turns out to be char- 
acterized by Dirac's two-oscillator representation of the 0(3, 2) de Sitter group. 

Some years ago Saavedra and Utreras (1981; M o n t e s i n o s : e t  al., 1985; 
Talukdar  and Niyagi, 1982; Giffon and Predazzi, 1983) considered the 
possible advantage of  new kinematics in the description of  the internal 
dynamics of  relativistic particles. Specifically, they proposed a high-energy 
generalization of the usual canonical commutat ion relations (crr) of  quan- 
tum mechanics (QM) with the purpose of  reinterpreting some results of  
quark physics. They pointed out that the ccr between the canonical 
coordinates ( q , p )  giving rise to Heisenberg's uncertainty principle were 
abstracted from atomic physics, whose characteristic energies are of  the 
order of  a few electron volts. This fact then raises the question (Saavedra 
and Utreras, 1981; Saavedra, 1981) of  whether they will still be valid at 
high energies in the range of 109-1012 eV. 

Saavedra and Utreras (1981) were concerned basically with a 1-dimen- 
sional problem. In this paper we present a simple model for treating the 
corresponding 3-dimensional problem. See also Montesinos et al. (1985) 
for a nonalgebraic approach to the 3d problem. 

I f  such a model is conceivable, the new basic commutat ion relations 
between the coordinate and momentum operators are required to be 
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constants of motion (Saavedra and Utreras, 1981; Saavedra, 1981). In 
three dimensions this is achieved by demanding that the canonical coordi- 
nates (qi, Pj) satisfy 

[qi, Pj] = if(01 . . . .  , O.)6ij, i,j = 1, 2, 3 

[H, f (O~, . . . ,  O,)1 = 0 (1) 

where f is a certain function of the n observables of the system. Equation 
(1) should reduce to the usual ccr in the appropriate nonrelativistic limit. In 
addition to this, we will consider a physical system where q~, pj, and f(Oa) 
close under a Lie group algebra forming a dynamical symmetry of the 
system. Here we depart from Saavedra and Utreras (1981), who did not 
impose this condition to any extent. In fact, in their treatment of the 
harmonic oscillator problem, the corresponding commutation relations (cr) 
do not close under a Lie algebra. 

To be quite general, one should not consider (q,p) to be just 
ordinary phase space canonical coordinates. They could also represent 
generalized internal coordinates of a physical system. The Zitterbewegung 
of the Dirac electron readily presents an example of this possibility (Saavedra, 
1965, 1981; Barut and Bracken, 1981a,b; Barut and Thacker, 1985). 

To develop the model, we shall make the simple choice 

f(O~) = f ( H )  = rI + tH + 2 H2 (2) 

with r, t, s real constants, and H the Hamiltonian of the system. A direct 
generalization of the ld theory would imply setting s = 0 with t # 0 ,  
leading to the correct description of 3d Zitterbewegung. However, it will not 
give, in this approach, the desired answer when applied to (high-energy) 
quark physics. In what follows we shall see that here it is more appropriate 
to set t = 0 a n d s # 0 .  

We notice that in three dimensions equations (1) and (2) introduce 
further restrictions on the remaining cr. To see this, we shall assume 
(Saavedra and Utreras, 1981) the validity of the Heisenberg equation of 
motion, so that the q; and the pj are related through 

[K, qi] = ihsc2(2~ {H, oi } ) = : -  ihsc2p~ (3) 

where K==/r + sH 2. This relation gives a definition for the (relativistic) 
momentum operator 2 in terms of the space coordinates q,. 

2Notice that Pi = (1/2c2){ H, qi} is the usual expression for the canonical momentum of the 
unbound particle in relativistic quantum mechanics. 
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TO study the free particle dynamical symmetry, we now proceed to 
compute the Jacobi identity for the triple (qe, pj, K). Using equations 
(1)-(3),  we find 

[Pi, Pj] = 0 (4) 

which says that the pj continue to be compatible observables. However, 
computing the Jacobi identity for the triple (qi, qj, pj), i =b j, we obtain 

[pj, [q~, qj ]] = (he) 2Spk, i, • k cyclic (5) 

Equation (5) shows that [q~, qj] 5 0 .  This is an interesting result, since 
equations (1) and (2) induce a modification in the cr among the qi. These 
commutators naturally define three new dynamical variables for the system. 
Let us write 

[q~, qj] =: igE~jkJk (6) 

where g is a real constant. Using equation (6) to calculate the Jacobi 
identity for the triple (K, q;, qj), we find that 

[K, Jk] = 0 (7) 

Now it is easily checked, by calculating the various Jacobi identities among 
the n = 10 operators in the set A = {q~,pj, K, Jk}, that the Lie algebra 
containing these operators is given by 

[qi, Pj] = ihK6,j, [J~, Jj] = ihEukJ k, 

[K, qi] = -ihsc2pi, [qi, qj] = --ihc2sEijkJk, 

[K, Jk] = 0, [K, Pk] = 0, 

[3.,., qj] = ihegkqk 

[Ji, Pj] = iheukPk 

[P,, PA = o 

(8) 

where we have normalized Jk by -hsc2/g  to fit an angular momentum 
operator and thus g is also gauged away. In (8) we can distinguish three 
different cases: For s < 0, we have the Lie algebra of the Euclidean group 
E(4). If  s = 0, it reduces to the Lie algebra of the Heisenberg group (notice 
Jk --- 0 here). Finally, for s > 0, we obtain the Lie algebra of the Poincar6 
group. For this last case we must recall that the irreducible unitary 
representations of the algebra classify particles with unbounded momenta 
(Bargmann and Wigner, 1946). 

In each of these alternatives, if we diagonalize the representing opera- 
tor of K on an irreducible unitary representation space for the group, its 
eigenvalues will be real and continuous. 

Next we want to study, within our approach, the bound particle 
problem. To this end we look for an appropriate value for the commutator 
between H 2 and p,.. The choice has to be consistent with the Lie algebra cr 
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for the set A. It is easy to see that the only possible choice that keeps 
invariant the nonvanishing commutators in (8) is to set 

[K, p;] = 2 [H2, p'] =' ihk2sqi (9) 

with k being a real constant. We can further justify this statement by 
observing that (9) modifies the cr involving p; in (8) (see below) leading to 
so(4, 1) or so(3, 2) de Sitter Lie algebras for A, with s ~ 0. These two Lie 
algebras are the only ones that under contraction (k ~ 0) give the Poincar6 
Lie algebra (8). Note also that the same cr (9) is obtained for the Lie 
algebra describing the usual (s = 0) relativistic case involving a (Lorentz) 
scalar linear potential in a two-body problem (Ram, 1982). 3 

As mentioned before, equation (9) imposes further conditions on the 
cr of the set of observables A. With the help of the Jacobi identity and the 
antisymmetry of  the Lie commutators we find that this set satisfies the cr 

[qi, pj] = ihKfij, [Ji, Jj] = ihcijkJk, [Ji, qj] = iheukqk 

[K, qi] = - ihsc2pi ,  [qi, qj] = -ihc2scijkJk,  [J/,pj] = ihcokpk (10) 

[K, Pi] = ihsk2qi, [Pi, Pj] = -- ihk2seOkJk, [K, Jk] = 0 

We observe that A now closes on a ten-dimensional semisimple Lie algebra. 
It can be directly checked for s < 0, s = 0, and s > 0, (10) reduces to the 
Lie algebra of  SO(5), the oscillator group Os(3), and the S 0 ( 3 ,  2) de Sitter 
group, respectively. 

Now we discuss the remarkable case s > 0. It is known (Evans, 1967) 
that there exist irreducible unitary representations of SO(  3, 2) which pos- 
sesses positive-definite or negative-definite eigenvalues of K. These repre- 
sentations contract to the physical representations of the Poincar6 group 
and they belong to the discrete series for SO(  3, 2). Among this set we single 
out the interesting ones given by Dirac (1963), for which K has the 
eigenvalues 

r + - ~ E ~ j )  = h c k s  , j = O ,  1,2 . . . .  ( l l a )  

r + - ~ E ( j ) = h c k s  + , 2 j = 1 , 2 , 3 , . . .  ( l l b )  

here j is the angular momentum quantum number, with j2 = h2j ( j  + 1). 

3In the limit s +0 the squared Hamiltonian becomes H 2 = c2p 2 4- ( / ] ' /C 2 + kr )  2 with p~ = -ihO/ 
3x r Note also that its spectrum reduces, for l = 0, to E] = k(2n + 1), which is known to be 
independent of m. 
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From (10) we obtain the uncertainty relations 

1 
Aq+A& > -~ h I<g>la,j 

1 2 
Aq, Aqj >- ~ hc Isl,,/,l<& >l (12) 

1 2 
kp, Ap, > ~ hk [sl,u~l<Jk) I 

In the ultrarelativistic limit the bound states will feel only the confining 
part of the potential. In this limit the square masses of hadrons, with given 
strangeness, isospin, etc., are found to be proportional to their angular 
momenta through the relation E2= flj + 7, where fl is the Regge slope 
(Lucha et al., 1991). The spectrum (11) properly fits this relation. Choosing 
r = 1, the value of s will be determined experimentally through fl and 7- For 
example, for mesons with vanishing strangeness (Particle Data Group, 
1988) fl = 2hck ~ 1.14 GeV 2 we find that s = +3.7 GeV -2. 

In the model presented above resonances are described by the Dirac 
(infinite-dimensional) representation of the dynamical group SO(3, 2) and 
thus they can be taken to be two-dimensional harmonic oscillators (Dirac, 
1963). Due to its simplicity, this model seems to be more suited for 
describing, to a good approximation, some meson resonances since these 
quantum systems are naturally described as bound states of two constituent 
quarks. 

As a final remark, we should mention that the Dirac representation of 
SO(3, 2) has already been applied, although in a different context, to the 
study of space-time symmetries of relativistic particles (Han et al., 1990; 
Kim and Kim, 1991; and references quoted therein). Han et al. (1990) and 
Kim and Kim (1991) exploit the geometry of the Wigner phase-space 
picture of the Dirac representation, which allows them to study the 
symmetry of the associated Lie algebra in terms of canonical transforma- 
tions. In their picture, however, the generator K is related rather to the 
magnitude of the Pauli-Lubanski vector than to the magnitude of the 
squared Hamiltonian. 
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